# PHYS120 SPRING 2015 FINAL EXAM

Please read all directions carefully and be sure to solve for only what is asked. Professor David Kleinfeld

#### Problem 1

Determine explicitly the voltage  $v_3$  in the following circuit:



# Problem 2

- a) Assuming the diode can be modeled as an ideal diode, and  $R_1 = R_2$ , plot the waveform  $v_o(t)$  for the circuit in Figure 4.57, assuming a triangle wave input. Write an expression for  $v_o(t)$  in terms of  $v_i$ ,  $R_1$ , and  $R_2$ .
- b) If the triangle wave has a peak amplitude of only 5 volts, and  $R_1 = R_2$ , a more accurate diode model must be used. Plot and write an expression for  $v_o$  assuming that the diode is modeled using an ideal diode in series with a 0.6-volt source. Draw the transfer curve  $v_o$  versus  $v_i$ .



FIGURE 4.57

## Problem 3



- a) Write the sinusoidal steady state node equations for the complex amplitudes of  $V_a$  and  $V_b.$
- b) Solve for  $V_0/V_i$  using the results in (a). Simplify your answer so that the denominator follows the form  $As^2 + Bs + C$ . This will help you in the next step.
- c) Assuming the circuit is under-damped, find the frequency at which the peak occurs, the magnitude of the transfer function at the peak, and the Q of resonance.

\*YOU DO NOT NEED TO GRAPH THIS.

### **Problem 4**



Consider the MOSFET circuit shown to the left. Determine the value of  $V_0$  in terms of the other circuit parameters. Assume the MOSFET is in saturation and is characterized by the parameters K and  $V_T$ 

HINT:  $V_A$  should NOT be in your answer.

#### **Problem 5**



Consider the BJT amplifier to the left. Assume that the BJT is characterized by the large signal model and that the BJT operates in its active region. Assume further that  $V_s = 10 \text{ V}$ ,  $R_L = 20 \text{ k}\Omega$ ,  $R_I = 500 \text{ k}\Omega$  and  $\beta = 100$ .

- a) Write an expression relating  $V_0$  to  $i_C$
- b) Write an expression relating  $i_C$  to  $V_I$
- c) Write an expression relating  $i_E$  to  $i_B$
- d) Write an expression relating  $V_0$  to  $V_1$
- e) What is the value of V<sub>O</sub> for an input voltage V<sub>I</sub> = 1? What are the corresponding values of i<sub>B</sub>, i<sub>C</sub>, and i<sub>E</sub>

#### **Problem 6**

- $(A + \overline{B})(\overline{A} \cdot \overline{B} + C) + \overline{C \cdot D}$  $(A \cdot \overline{C} + \overline{B \cdot D})(\overline{D + \overline{B} + A})$  $A + \overline{\overline{B} \cdot D} + A \cdot C \cdot \overline{D}$  $\overline{((\overline{A + \overline{C}}) + B + \overline{D})} + A \cdot \overline{C} \cdot D$
- a) Give an implementation using gates for each of the four logic expressions.
- b) Write the truth table for each of the four expressions.
- c) Suppose you know that A = 0. Simplify the four expressions under this constraint.
- d) Simplify the four expressions assuming that A and B are related as  $A = \overline{B}$ .

#### \*\*\*THE END\*\*\*

<sup>\*</sup> If you so choose, draw a picture of Dr. Kleinfeld in the space you have remaining in your blue book. \*Best one gets +1 point to their final!